5 research outputs found

    A Kernel Independence Test for Random Processes

    Full text link
    A new non parametric approach to the problem of testing the independence of two random process is developed. The test statistic is the Hilbert Schmidt Independence Criterion (HSIC), which was used previously in testing independence for i.i.d pairs of variables. The asymptotic behaviour of HSIC is established when computed from samples drawn from random processes. It is shown that earlier bootstrap procedures which worked in the i.i.d. case will fail for random processes, and an alternative consistent estimate of the p-values is proposed. Tests on artificial data and real-world Forex data indicate that the new test procedure discovers dependence which is missed by linear approaches, while the earlier bootstrap procedure returns an elevated number of false positives. The code is available online: https://github.com/kacperChwialkowski/HSIC .Comment: In Proceedings of The 31st International Conference on Machine Learnin

    Interpretable Distribution Features with Maximum Testing Power

    Full text link
    Two semimetrics on probability distributions are proposed, given as the sum of differences of expectations of analytic functions evaluated at spatial or frequency locations (i.e, features). The features are chosen so as to maximize the distinguishability of the distributions, by optimizing a lower bound on test power for a statistical test using these features. The result is a parsimonious and interpretable indication of how and where two distributions differ locally. An empirical estimate of the test power criterion converges with increasing sample size, ensuring the quality of the returned features. In real-world benchmarks on high-dimensional text and image data, linear-time tests using the proposed semimetrics achieve comparable performance to the state-of-the-art quadratic-time maximum mean discrepancy test, while returning human-interpretable features that explain the test results

    Fast Two-Sample Testing with Analytic Representations of Probability Measures

    Full text link
    We propose a class of nonparametric two-sample tests with a cost linear in the sample size. Two tests are given, both based on an ensemble of distances between analytic functions representing each of the distributions. The first test uses smoothed empirical characteristic functions to represent the distributions, the second uses distribution embeddings in a reproducing kernel Hilbert space. Analyticity implies that differences in the distributions may be detected almost surely at a finite number of randomly chosen locations/frequencies. The new tests are consistent against a larger class of alternatives than the previous linear-time tests based on the (non-smoothed) empirical characteristic functions, while being much faster than the current state-of-the-art quadratic-time kernel-based or energy distance-based tests. Experiments on artificial benchmarks and on challenging real-world testing problems demonstrate that our tests give a better power/time tradeoff than competing approaches, and in some cases, better outright power than even the most expensive quadratic-time tests. This performance advantage is retained even in high dimensions, and in cases where the difference in distributions is not observable with low order statistics

    Linearized GMM Kernels and Normalized Random Fourier Features

    No full text
    corecore